Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with Aploc-weights
نویسندگان
چکیده
We obtain wavelet characterizations of Besov spaces and the Triebel–Lizorkin spaces associated with Aloc ∞ -weights. These characterizations are used to show that our wavelet bases are also greedy. c © 2009 Elsevier Inc. All rights reserved.
منابع مشابه
Decomposition of Weighted Triebel-lizorkin and Besov Spaces on the Ball
Weighted Triebel-Lizorkin and Besov spaces on the unit ball Bd in Rd with weights wμ(x) = (1 − |x|2)μ−1/2, μ ≥ 0, are introduced and explored. A decomposition scheme is developed in terms of almost exponentially localized polynomial elements (needlets) {φξ}, {ψξ} and it is shown that the membership of a distribution to the weighted Triebel-Lizorkin or Besov spaces can be determined by the size ...
متن کاملOn the equivalence of brushlet and wavelet bases
We prove that the Meyer wavelet basis and a class of brushlet systems associated with exponential type partitions of the frequency axis form a family of equivalent (unconditional) bases for the Besov and Triebel-Lizorkin function spaces. This equivalence is then used to obtain new results on nonlinear approximation with brushlets in Triebel-Lizorkin spaces.
متن کاملWavelet Decomposition Techniques and Hardy Inequalities for Function Spaces on Cellular Domains
A rather tricky question is the construction of wavelet bases on domains for suitable function spaces (Sobolev, Besov, Triebel-Lizorkin type). In his monograph from 2008, Triebel presented an approach how to construct wavelet (Riesz) bases in function spaces of Besov and Triebel-Lizorkin type on cellular domains, in particular on the cube. However, he had to exclude essential exceptional values...
متن کاملRestricted Non-linear Approximation in Sequence Spaces and Applications to Wavelet Bases and Interpolation
Restricted non-linear approximation is a type of N-term approximation where a measure ν on the index set (rather than the counting measure) is used to control the number of terms in the approximation. We show that embeddings for restricted non-linear approximation spaces in terms of weighted Lorentz sequence spaces are equivalent to Jackson and Bernstein type inequalities, and also to the upper...
متن کاملJacobi Decomposition of Weighted Triebel-lizorkin and Besov Spaces
The Littlewood–Paley theory is extended to weighted spaces of distributions on [−1, 1] with Jacobi weights w(t) = (1−t)(1+t) . Almost exponentially localized polynomial elements (needlets) {φξ}, {ψξ} are constructed and, in complete analogy with the classical case on R, it is shown that weighted Triebel–Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients {〈f, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 161 شماره
صفحات -
تاریخ انتشار 2009